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Abstract. The Belavin–Polyakov equationtu = t× ts with t2 = 1 has been shown recently to
describe the evolution of a wide class of space curves, and has several physical applications. Here,
we obtain a hierarchy of exact multi-twist solutions for this nonlinear system. As an illustration,
we apply our results to continuum magnetic models. Whenu ands denote temporal and spatial
variables respectively, these twists describe very low-energy domain walls travelling along an
antiferromagnetic spin chain. When they denote independent spatial variables, the solutions
represent twists in the static configuration (texture) of a two-dimensional ferromagnet.

1. Introduction

The study of space-curve evolution can be used in many physical applications such as the motion
of a vortex filament, kinematics of a polymer chain, interface dynamics, low-dimensional
magnets etc. In general, curve evolution can be described [1] by the following two sets of
first-order ODEs for the unit orthogonal triad of vectors(t, n, b):

ts = Kn ns = −Kt + τb bs = −τn (1)

and

tu = gn + hb nu = −gt + τ0b bu = −ht− τ0n. (2)

Here,t,n andb denote, respectively, the tangent to the curve, the normal and binormal vectors.
The arc length,s, and another variable,u (say, time) are independent. The subscriptss and
u stand for the respective partial derivatives. Equations (1) are the usual Frenet–Serret [1]
equations, with spatial curvatureK = (ts · ts)1/2 and torsionτ = t · (ts × tss)/K2. Likewise,
the temporal curvaturesg andh and the temporal torsionτ0 can be appropriately defined by
using equations (2). We have recently shown [2] that ifg = 0 whileK andh are non-zero,
the curve evolution reduces to the form

ts = (K/h)(tu × t). (3)

We named this the modified Belavin–Polyakov equation (MBPE), owing to the fact that if
K/h is a separable function ofu ands, say [G(u)/F (s)], then one can transform to a new

∗ We dedicate this paper to the memory of Sergio de Menezes who pointed out possible instabilities of the single-twist
dynamical solution in the context of the discrete AFM chain. Sergio’s untimely demise cut short many of his ideas
regarding extensions of this work. R Blumenfeld gratefully acknowledges funding by the Director’s Fellowship at
Los Alamos National Laboratory.
§ Present address: Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE, UK.

0305-4470/00/132459+10$30.00 © 2000 IOP Publishing Ltd 2459



2460 R Blumenfeld and Radha Balakrishnan

set of variables,u′ = ∫ u G(u) du ands ′ = ∫ s F (s) ds, to obtain the usual Belavin–Polyakov
equation (BPE) [3]

tu′ = t× ts ′ . (4)

Whenh = K, equation (3) is exactly the BPE in terms of the actual space–time variables.
While the derivation of (3) for general curves may be found in [2] it is instructive to recall how
it is obtained forg = 0. From equations (1) and (2) we have, quite generally,

ts · tu = Kg ts · ts = K2 tu · tu = g2 + h2. (5)

and

ts × tu = Kht. (6)

Taking the cross product of the latter relation from the left withts , and using the former, we
find

gts −Ktu = h(ts × t). (7)

Wheng = 0, (7) reduces to equation (6).
The BPE first appeared in the context of the nonlinear sigma model field theory and in the

static two-dimensional classical ferromagnet, where boths andu are spatial coordinates. By
using complex variables, it was shown to support multi-instanton [3] solutions. More recently,
it has been found to describe the very low-energy dynamics of a classical one-dimensional
antiferromagnet, in which contexts is a spatial coordinate that runs along the chain andu is
time. Searching for travelling wave solutions fort, it was possible to obtain a single-twist
solution [4]. This method, however, could not be generalized to yield multi-twists. In this
paper, we find a new transformation that allows us to identify a novel hierarchy of travelling
multi-twistsolutions to this equation.

The BPE turns out to be particularly useful in describing low-dimensional magnetic
systems. Here, we discuss this application in some detail and interpret the physical significance
of the multi-twists in these systems. The paper is organized as follows. In section 2 we outline
how the BPE arises in magnetic systems and introduce a transformation that converts this
vectorial equation into Cauchy–Riemann relations (CRRs) for two scalar variables. In section 3
we use complex variables to obtain, in addition to the well known multi-instantons [3], a class
of non-travellingtwists. In section 4 we use moving coordinates (real variables) first to rederive
the already knowntravelling single twist [4] and then to obtain, for the first time, a bi-twist
solution in this system. This solution describes a twist and an anti-twist moving apart. The
twists are related to harmonic functions, which gives insight into their nature and behaviour. In
section 5 we generalize these results to show how ahierarchyof multi-twists can be obtained
using a systematic analysis. The hierarchy is labelled by an integerN that can be interpreted
physically as the maximal number of twists in the system. We discuss a particular subset of these
solutions in the asymptotic regime and identify the first two members of the hierarchy as the
single twist and bi-twist of section 4. In continuum magnetic systems, theN -twists represent
N moving domain walls along the antiferromagnetic (AFM) chain, with each wall possessing
a spin-wave like mode within the wall thickness. This new class of solutions is markedly
distinct (both physically and mathematically) from the known multi-instantons [3]. Further,
these correspond to static spin configurations (textures) in two-dimensional ferromagnets. The
paper concludes with a summary and discussion in section 6.
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2. Applications to magnetic systems

We begin by explaining briefly how the BPE becomes applicable in thecontinuumdescription
of magnetic chains modelled by the classical isotropic Heisenberg exchange Hamiltonian,

H = −J
∑
n

Sn · Sn+1.

Here, J is a constant nearest-neighbour interaction,Sn is the spin at thenth site and
(Sn)

2 ≡ S2 = constant. The spin evolution equation can be found [5] from

Ṡn = {H,Sn}
where the curly brackets denote an appropriately defined Poisson bracket for the spin system.
This leads to

Ṡn = JSn × (Sn+1 + Sn−1). (8)

Equation (8) holds regardless of the sign ofJ . At this stage, we must distinguish between
the ferromagnetic (FM) and AFM cases. In the former (J > 0) the low-energy spin
orientations vary slowly over distances of the order of the lattice separationa, and the
continuum version of equation (8) is obtained directly by using a Taylor expansion,Sn±1→
S(x, t)± aSx + (a2/2)Sxx + · · ·, which yields the well known Landau–Lifshitz equation

St = S × Sxx (9)

wherex → x/a, t → JSt are redefined in dimensionless form andS2 = 1. The subscripts
x andt represent partial derivatives. Equation (9) supports pulse-type solitary waves [5] and
has been studied extensively. In particular, it is known to be integrable and to haveN -soliton
solutions [6].

In contrast, the study of the dynamics of isotropic AFM chains (J < 0) is less complete
(see, for example, the review [7]) and the continuum low-energy analysis is complicated by
the need to separate the even,{Se}, and the odd,{So}, sublattices. Let us now define new
orthogonal unit vectorsη (the staggered magnetization) andξ (the effective magnetization)
via

So − Se = 2S
√

1− ε2η(x, t) So + Se = 2Sεξ(x, t) (10)

where 2ε2 = 1 + (So · Se)/S2, which are coupled through equation (8). At low energyε � 1
and, to zero order inε, the equations decouple to yield [4]

ηt = (ηx × η) (11)

wherex → x/2a andt → JSt . Thus, equation (11) is just the BPE (equation (4)), whenη is
identified witht.

Before analysing equation (11) we point out a connection with the two-dimensionalstatic
ferromagnetic case. The equation of motion of the latter is

St = S ×∇2S = 0

which is obtained from the two-dimensional analogue of equation (9). It can be readily shown
that this equation is solved by all the solutions of the first-order equation

Sy = Sx × S.
The latter equation isidentical to the BPE whenη→ S andt → y. The connection between
the two systems is useful for obtaining static solutions for the planar FM from the dynamical
solutions for the AFM and vice versa (although care should be taken in transforming initial
conditions to boundary conditions). In addition, when suitably interpreted, such solutions
would also apply to the evolution of curves as described by equation (4).
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To make progress, writeη (the tangent or effective spin vector) in terms of its polar angle
θ and azimuthal angleφ:

η = (sinθ cosφ, sinθ sinφ, cosθ). (12)

Substituting this into equation (11), we obtain

θx = − sinθ φt θt = sinθ φx. (13)

We now transform the angle variableθ toψ by using

ψ ≡ ln
√
(1 + cosθ)/(1− cosθ) ≡ ln cot(θ/2). (14)

This reduces relations (13) to

ψx = φt ψt = −φx (15)

with ψxx +ψtt = φxx + φtt = 0. In terms ofψ , the vectorη is

η = (sechψ cosφ, sechψ sinφ, tanhψ). (16)

The natural appearance of the hyperbolic tangent inη(z) = cosθ , already points to an inherent
possibility of domain walls in the magnetic system, as will be discussed below.

3. Analysis of equations (15) using complex variables

Multi-instantons were originally derived [3] from equations (13), by defining the variable
M(x, t) = cot(θ/2)exp(iφ) = M1(θ, φ) + iM2(θ, φ), whereupon it is possible to show that
M1x = M2t andM1t = −M2x . These are CRRs between two real functionsM1 andM2, so
thatM(ζ) is analytic in theζ = x + it complex plane. The simplest choiceM = (ζ − ζo)n
then yields the multi-instanton solution. Note that becauseM1 andM2 aremixed functions
of the two anglesθ andφ, the solutions for cosθ is in terms ofbothM1 andM2, making the
analysis a little involved. The advantage of using the variableψ is that we obtain the CRRs
(equations (15)) which separate the two variables in a natural way. Hence, any analytic fuction
8 ≡ ψ + iφ solves equations (15), and therefore the BPE. In the new variables, then-instanton
solution would correspond to8(ζ) = n ln(ζ − ζ0). However, for deriving travelling twist
solutions, this type of analysis is not very convenient. For example, for the analytic function
8(ζ) = (ζ − ζ0)/0,

cosθ = η(z) = tanh[(x − x0)/0] φ = (t − t0)/0. (17)

Inspection of this solution shows that at any given instant of timet , the vectorηwhich lies along
the positivez direction atx → −∞ gradually twists down, acquiringx andy components
until, at a certain intermediate fixedx = x0, it lies fully in the (x, y) plane. From then on it
continues twisting down until it finally comes to rest along the negativez direction asx → +∞.
Further, the angleφ = (t− t0)/0 also twists, rotating about thez axis with an angular velocity
(0)−1. The sign ofη(z) changes justonceasx goes from−∞ to +∞ in such a way that the
positionx0 at which it changes sign (i.e. the location of the domain wall) isindependentof
time. This is therefore defined to be asingle non-travellingtwist or nontravelling domain wall.
(Hereafter, we will use the terms ‘twist’ and ‘domain wall’ interchangeably.)

We can now generalize this form to any nontravellingN -twist (multi-twist) solution:

8(ζ) =
N∏
j=1

(ζ − ζj )/0j .

Here,η(z) changes signN times, asx goes from−∞ to +∞ in such a way that thex values at
which sign changes occur are allindependentof time. To obtain travelling twists, we analyse
equations (15) without going over to the complexζ plane. In the next section we derive the
travelling single twist and bi-twist solutions.
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4. Travelling single-twist and bi-twist solutions

It is convenient to use moving coordinates to solve equations (15) for travelling twists:

ξ ≡ c
√

1 +ω2(x − vt) σ ≡ c
√

1 +v2(ωx + t). (18)

Here,v and−1/ω are independent velocities andc is a global rescaling factor. In terms ofξ
andσ , relations (15) become

ψξ = αφξ − βφσ ψσ = βφξ − αφσ
α ≡ (ω − v)/µ β ≡ γ /µ (19)

whereγ ≡
√
(1 +v2)/(1 +ω2) andµ ≡ 1 + vω. Note thatc scales out, which means that

relations (19) are invariant to a uniform scaling of the entire plane. Eliminating eitherψ or φ
we have

L{ψ} = L{φ} = 0 (20)

where the operatorL is

L ≡ ∂ξξ − 2(α/β)∂ξσ + ∂σσ . (21)

We now seek particular solutions of the form

ψ(ξ, σ ) = a1ξ
2 + a2ξσ + a3σ

2 + a4ξ + a5σ +ψ0

φ(ξ, σ ) = b1ξ
2 + b2ξσ + b3σ

2 + b4ξ + b5σ + φ0.
(22)

On using (15), we find that the twelve coefficients appearing in (22) must satisfy six independent
relations and therefore only six of them are independent. The form (22) is an unusual
solution for cosθ = tanhψ . Although hyperbolic functions abound in nonlinear problems,
their arguments are generically linear, rather than quadratic, in space and time coordinates.
Moreover, the freedom in the choice of the coefficients,aj , leaves room for many interesting
combinations, some of which are explored next.

4.1. A travelling single twist

Choosing realv and ω and settinga1 = a2 = a3 = 0 in equation (22) we obtain
cosθ = tanh(a4ξ +a5σ +ψ0) andφ−φ0 = −[(αa4−βa5)ξ + (βa4−αa5)σ ]. Forx →±∞,
cosθ → ±1 (θ → ±π ) and therefore this is a twist solution inθ . While θ changes abruptly
across the location of the node ofψ , the angleφ rotates linearly withx andt . The propagation
speeds ofψ andφ are

Vψ = [v − bγ ]/[1 + bωγ ] Vφ = [bv + γ ]/[b − ωγ ] (23)

whereb = a5/a4. Analysis of these relations shows thatψ andφ cannotpropagate at the
same speed, implying thatφ rotates constantly across the domain wall. We note that the special
caseω = v anda5 = 0 yieldsVψ = v andVφ = −1/v and reproduces the single travelling
twist solution [4] mentioned in the introduction. That particular single twist has the form
cosθ = − tanh(kx − ωt) andφ = (ωx + kt) and it follows that

η = [sech(kx − ωt) cos(ωx + kt), sech(kx − ωt) sin(ωx + kt),− tanh(kx − ωt)]. (24)

In contrast to the nontravelling twist of the last section, this is a travelling single-twist solution
for η whosex-position travels at a velocityVψ , while theφ-field travels at a velocityVφ . In
other words, a travelling single twist is a moving domain wall with a ‘spin-wave’ (but with a
varying amplitude) mode present within the wall thickness.
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4.2. Travelling bi-twist solutions

We now proceed to discuss more complex solutions. Rewritingψ andφ in the quadratic form:(
ψ

φ

)
=
(
A

D

)
x2 +

(
B(t)

E(t)

)
x +

(
C(t)

F (t)

)
(25)

and applying equation (15), we find thatA andD are arbitrary constants,B = −2Dt + B0,
E = 2At +E0,C = −At2−E0t +C0, andF = −Dt2 +B0t +F0. Rearranging these relations
we get (

ψ

φ

)
=
(
A

D

)[
x +

(
α(t)

γ (t)

)][
x +

(
β(t)

δ(t)

)]
(26)

whereα andβ (γ andδ) are the (time-dependent) roots of the quadratic forms ofψ (φ). When
the roots are real the solution describes a pulse in cosθ , whose width is

Wψ = 21(t)/A (27)

where12(t) = (A2+D2)t2+(E0A−B0D)t+(B2
0/4−C0A). SinceA andD are real then after

some time1 always increases with time and therefore even roots that are initially complex
eventually become real. This also implies a kind of instability of pulses in the sense that an
initial pulse always broadens with time. This broadening happens at an asymptotic rate of

VW = 2
√

1 +D2/A2.

For example, suppose that we start the system att0 = 0. Then from equation (25) we have

cosθ = tanh(Ax2 +B0x +C0)

and

φ = Dx2 +E0x + F0.

For A > 0 (A < 0) we haveη(z) → 1(−1) as |x| → ∞ and the evolution is uniquely
determined by equation (26). ForA > 0, the minimum ofψ is atx0 = (B0/2−Dt)/A and
the value ofη(z) atx0 decreaseswith time to rapidly approach−1:

η
(z)

min = tanh[−A12(t)]. (28)

Thus even a very small initial quadratic corrugation inη(z) eventually evolves to−1 and there
is an infinite broadening of the domain ofη(z) = −1 within a uniform state ofη(z) = 1, with
the domain centre travelling at a speed of−D/A. ForA < 0 a mirror-image situation occurs
where theη(z) = 1 state grows inside theη(z) = −1 state. An important question is whether
the domain walls are stable and remain sharp since a domain wall that also broadens with time
loses its meaning as such. Defining then the thickness of the domain wall,w, as the range
of x over whichη(z) changes from−0.8 to 0.8, we find that the wallssharpenwith time,
w = 8 ln 3

√
D2 +A2/t → 0. This is shown in figure 1, forA = D = 1/

√
2,C0 = F0 = 0,

B0 = 2 andE0 = 1. To the best of our knowledge this is the first time that nonlinear solutions
of this kind have been derived for this problem.

5. Generalization to travelling multi-twist solutions

In this section, we show that the single-twist and bi-twist solutions discussed in section 4 are
but the first two members of an infinite hierarchy of solutions. To this end, we writeψ andφ
in the form (

ψ

φ

)
=

N∑
k=0

(
PN−k
QN−k

)
xk (29)
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Figure 1. A bi-twist analytic solution forη(z) = cosθ .

wherePn andQn are polynomials of degreen in the time variablet . Using equation (15), each
of these polynomials has to satisfy the following second-order ODE:

R̈k+2,t t + (N − k − 1)(N − k)Rk = 0 (30)

whereR is eitherP(t)orQ(t). We use these equations to construct the polynomials recursively.
It can be readily shown that, other than their constant terms, theQ polynomials are completely
determined by theP polynomials. Since each second-order ODE introduces two constants,
the solution has 2N + 2 arbitrary constants,P0, P1(0), . . . , PN(0), Q0, Q1(0), . . . ,QN(0),
determined by the initial data. The solutions forη(z) = cosθ ,

η(z) = tanh

( N∑
k=0

PN−kxk
)

(31)

describe many domain walls travelling along the chain. A wall occurs whereverψ has areal
root in the variablex and hence the number of walls at any time is, at most,N . Figure 2 shows a
typical such solution forN = 3, where an initially slightly distorted single twist develops into
three walls. In the general case it is the highest order term int that dominates asymptotically
andψ(t →∞) converges to the form

ψ = tN
N∑
k=0

cN−k(x/t)k = P0

N∏
i=1

(x − vit) (32)

wherecn is the (real) coefficient oftn in Pn(t). Note that, in principle, the rootsvi may be
complex, in which case there is no actual wall. When all thevi are real, the solution has
exactlyN walls moving at velocitiesvi that areinterdependent. For example, forN = 2 we
have seen that the velocities are related byv1 = −1/v2. In (32) the distance between any two
neighbouring walls increases with time, which represents continuously growing domains of
alternating polar orientations. This may be regarded as repulsion forces between twists and
anti-twists in this system.
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Figure 2. A three-twist solution forη(z): Note the production of three walls from one initial wall.

Since the coefficients of the polynomials are time dependent, at intermediate times twists
may be created and annihilated. However, they must do soin pairs. Creation occurs when a
local minimum ofψ(x) downshifts with time until it intersects with thex = 0 axis whereupon
it generates two real roots that initiate two domain walls. Further downshift moves the domain
walls apart. Annihilation is the opposite process when a local minimum ofψ moves upwards
relative to the real axis until the real roots meet and disappear. If the caseN = 2 is generic
then creation is more likely than anihilation in the long run and walls will be generated until
their number reachesN .

6. Summary and conclusions

In this paper, we have found exactN -twist solutions for the BPE, which describes (a) the
evolution dynamics of the spin vectors in an Heisenberg AFM spin chain at low energies
(equation (11)) and (b) the stationary solutions for the classical continuous two-dimensional
Heisenberg FM. This equation also describes a wide class of space curves moving in three
dimensions [2]. The solutions found here are markedly different from the known multi-
instantons [3] and merons [8]. Using the bi-twist solution given in section 4, we have plotted
the corresponding moving curve in figure 3. (The moving curve corresponding to the single-
twist solution can be found in [2].)

Our results are significant in view of the fast technological advances made in recent years in
the fabrication of a wide variety of low-dimensional magnets. In particular, these have inspired
much interest in the nonlinear excitations that occur in Heisenberg spin chains [7] to which our
solutions directly apply. In two-dimensional FM layers the multi-twists correspond to static
spin textures, while in the AFM chain they describe moving domain walls. We remark that
the analysis presented here also applies to certain inhomogeneous AFM chains, as discussed
in [2]. Specifically, in that case these solutions are given in terms of transformed variables that
are determined by the particular inhomogeneity.
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Figure 3. A bi-twist moving curve solution of the BPE (equation (4)).

Our solutions are relevant in yet another context. By identifying the vectorη with the
tangent to a moving curve and using Lamb’s formalism [1], equation (11) is gauge-equivalent
to the following nonlinear integro-differential equation [4]:

i9t +9x −9
∫ x

−∞
|9|2 dx ′ = 0 (33)

where9 = (K/2) exp{i ∫ x(dx ′/K2)η ·(ηx ′ ×ηx ′x ′)} is a complex function andK2 = 4|9|2 =
|ηx |2. Thus, in that context, the multi-twist solutions forη carry over into a hierarchy of
solutions for9(x, t).

The boundary conditions determine whether the number of twists is even (η(z)(±∞) = 1)
or odd (η(z)(±∞) = ±1). The asymptotic form (32), combined with equation (31), describes
independent twists that propagatewithout change of shapeand are thus reminiscent of kink-
solitons. This similarity begs the intriguing question whether these solutions occur in other
nonlinear systems. Finally, we comment that there are still questions of stability to be cleared
in the following sense: while these solutions are certainly stable for the static two-dimensional
FM case, it is not clear whether this is so for the AFM application. We hope to present a detailed
analysis of this issue in a future report, as we believe that it is of much physical interest.
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